Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 14(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37999072

RESUMEN

Modern lipidomics has the power and sensitivity to elucidate the role of insects' lipidomes in their adaptations to the environment at a mechanistic molecular level. However, few lipidomic studies have yet been conducted on insects beyond model species such as Drosophila melanogaster. Here, we present the lipidome of adult males of another higher dipteran frugivore, Bactrocera tryoni. We describe 421 lipids across 15 classes of ester neutral lipids and phospholipids and ether neutral lipids and phospholipids. Most of the lipids are specified in terms of the carbon and double bond contents of each constituent hydrocarbon chain, and more ether lipids are specified to this degree than in any previous insect lipidomic analyses. Class-specific profiles of chain length and (un)saturation are broadly similar to those reported in D. melanogaster, although we found fewer medium-length chains in ether lipids. The high level of chain specification in our dataset also revealed widespread non-random combinations of different chain types in several ester lipid classes, including deficits of combinations involving chains of the same carbon and double bond contents among four phospholipid classes and excesses of combinations of dissimilar chains in several classes. Large differences were also found in the length and double bond profiles of the acyl vs. alkyl or alkenyl chains of the ether lipids. Work on other organisms suggests some of the differences observed will be functionally consequential and mediated, at least in part, by differences in substrate specificity among enzymes in lipid synthesis and remodelling pathways. Interrogation of the B. tryoni genome showed it has comparable levels of diversity overall in these enzymes but with some gene gain/loss differences and considerable sequence divergence from D. melanogaster.

2.
PLoS One ; 18(4): e0285099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37115788

RESUMEN

Divergence between populations in mating behaviour can function as a potent premating isolating mechanism and promote speciation. However, very few cases of inherited intraspecific variation in sexual signalling have been reported in tephritid fruit flies, despite them being a highly speciose family. We tested for such variation in one tephritid, the Queensland fruit fly, Bactrocera tryoni (Qfly). Qfly mating behaviour depends on volatiles secreted from male rectal glands but no role for the volatiles from female rectal glands has yet been reported. We previously detected over 100 volatile compounds in male rectal glands and identified over 30 of them. Similar numbers were recorded in females. However, many compounds showed presence/absence differences between the sexes and many others showed quantitative differences between them. Here we report inherited variation among 24 Qfly lines (23 isofemale lines established from recent field collections and one domesticated line) in the abundance of three esters, two alcohols, two amides, an aldehyde and 18 unidentified volatiles in male rectal glands. We did not find any compounds in female rectal glands that varied significantly among the lines, although this may at least partly reflect lower female sample numbers. Most of the 26 male compounds that differed between lines were more abundant in the domesticated line than any of the recently established isofemale lines, which concurs with other evidence for changes in mating behaviour during domestication of this species. There were also large differences in several of the 26 compounds among the isofemale lines, and some of these differences were associated with the regions from which the lines were collected. While some of the variation in different compounds was correlated across lines, much of it was not, implicating involvement of multiple genes. Our findings parallel reports of geographic variation in other Qfly traits and point to inherited differences in reproductive physiology that could provide a basis for evolution of premating isolation between ecotypes.


Asunto(s)
Tephritidae , Animales , Masculino , Femenino , Tephritidae/genética , Glándula de Sal , Drosophila , Domesticación , Variación Genética
3.
PLoS One ; 17(8): e0273210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36001616

RESUMEN

Rectal gland volatiles are key mediators of sexual interactions in tephritid fruit flies. We used solid-phase microextraction (SPME) plus gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID) to substantially expand rectal gland chemical characterisation of the Queensland fruit fly (Bactrocera tryoni (Diptera: Tephritidae); Qfly). The SPME GC-MS analysis identified 24 of the 30 compounds previously recorded from Qfly rectal glands, plus another 21 compounds that had not previously been reported. A few amides and fatty acid esters dominated the chromatograms of males and females respectively, but we also found other esters, alcohols and aldehydes and a ketone. The GC-FID analyses also revealed over 150 others, as yet unidentified, volatiles, generally in lesser amounts. The GC-FID analyses also showed 49 and 12 compounds were male- and female-specific, respectively, both in single sex (virgin) and mixed sex (mostly mated) groups. Another ten compounds were male-specific among virgins but undetected in mixed sex groups, and 29 were undetected in virgins but male-specific in mixed sex groups. The corresponding figures for females were four and zero, respectively. Most short retention time peaks (including a ketone and an ester) were male-specific, whereas most female-biased peaks (including five fatty acid esters) had long retention times. Our results indicate previously unsuspected diversity of rectal gland volatiles that might have pheromone functions in males, but far fewer in females.


Asunto(s)
Tephritidae , Animales , Ácidos Grasos , Femenino , Cromatografía de Gases y Espectrometría de Masas , Cetonas , Masculino , Glándula de Sal , Caracteres Sexuales
4.
Curr Res Insect Sci ; 2: 100040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003266

RESUMEN

Female insects commonly have more than one mate during a breeding period ('polyandry'), storing and using sperm from multiple males. In addition to its evolutionary significance, insect polyandry has practical implications for pest management that relies on the sterile insect technique (SIT). The Queensland fruit fly, Bactrocera tryoni (Froggatt), is a major horticultural pest in Australia, and outbreaks are managed by SIT in some regions. The present study provides the first evidence for polyandry in female B. tryoni from field populations from New South Wales (NSW) and Queensland (QLD) through multi-locus genotyping (ten microsatellite markers in four fluorescent multiplexes) of the stored sperm in ovipositing females. Polyandry level was significantly higher in the NSW collection (80.0 %) than the QLD collection (26.1 %), suggesting substantial regional and/or temporal variation. These findings have important implications for the use of SIT to suppress B. tryoni populations and to eradicate outbreaks.

5.
Sci Rep ; 12(1): 153, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997097

RESUMEN

Females of many insect species are unreceptive to remating for a period following their first mating. This inhibitory effect may be mediated by either the female or her first mate, or both, and often reflects the complex interplay of reproductive strategies between the sexes. Natural variation in remating inhibition and how this phenotype responds to captive breeding are largely unexplored in insects, including many pest species. We investigated genetic variation in remating propensity in the Queensland fruit fly, Bactrocera tryoni, using strains differing in source locality and degree of domestication. We found up to threefold inherited variation between strains from different localities in the level of intra-strain remating inhibition. The level of inhibition also declined significantly during domestication, which implied the existence of genetic variation for this trait within the starting populations as well. Inter-strain mating and remating trials showed that the strain differences were mainly due to the genotypes of the female and, to a lesser extent, the second male, with little effect of the initial male genotype. Implications for our understanding of fruit fly reproductive biology and population genetics and the design of Sterile Insect Technique pest management programs are discussed.


Asunto(s)
Domesticación , Conducta Sexual Animal , Tephritidae/fisiología , Animales , Femenino , Variación Genética , Genotipo , Herencia , Masculino , Fenotipo , Densidad de Población , Crecimiento Demográfico , Reproducción , Tephritidae/genética
6.
Mol Ecol Resour ; 22(4): 1559-1581, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34839580

RESUMEN

Many Drosophila species differ widely in their distributions and climate niches, making them excellent subjects for evolutionary genomic studies. Here, we have developed a database of high-quality assemblies for 46 Drosophila species and one closely related Zaprionus. Fifteen of the genomes were newly sequenced, and 20 were improved with additional sequencing. New or improved annotations were generated for all 47 species, assisted by new transcriptomes for 19. Phylogenomic analyses of these data resolved several previously ambiguous relationships, especially in the melanogaster species group. However, it also revealed significant phylogenetic incongruence among genes, mainly in the form of incomplete lineage sorting in the subgenus Sophophora but also including asymmetric introgression in the subgenus Drosophila. Using the phylogeny as a framework and taking into account these incongruences, we then screened the data for genome-wide signals of adaptation to different climatic niches. First, phylostratigraphy revealed relatively high rates of recent novel gene gain in three temperate pseudoobscura and five desert-adapted cactophilic mulleri subgroup species. Second, we found differing ratios of nonsynonymous to synonymous substitutions in several hundred orthologues between climate generalists and specialists, with trends for significantly higher ratios for those in tropical and lower ratios for those in temperate-continental specialists respectively than those in the climate generalists. Finally, resequencing natural populations of 13 species revealed tropics-restricted species generally had smaller population sizes, lower genome diversity and more deleterious mutations than the more widespread species. We conclude that adaptation to different climates in the genus Drosophila has been associated with large-scale and multifaceted genomic changes.


Asunto(s)
Drosophila , Genoma , Adaptación Fisiológica/genética , Animales , Drosophila/genética , Genómica , Humanos , Filogenia
7.
BMC Genet ; 21(Suppl 2): 132, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339498

RESUMEN

BACKGROUND: Bactrocera tryoni and Bactrocera neohumeralis mate asynchronously; the former mates exclusively around dusk while the latter mates during the day. The two species also differ in the colour of the post-pronotal lobe (callus), which is predominantly yellow in B. tryoni and brown in B. neohumeralis. We have examined the genetic relationship between the two characters in hybrids, backcrosses and multigeneration hybrid progeny. RESULTS: Our analysis of the mating time of the parental species revealed that while B. tryoni mate exclusively at dusk, B. neohumeralis females pair with B. neohumeralis males during the day and with B. tryoni males at dusk. We found considerable variance in mating time and callus colour among hybrid backcross individuals of both sexes but there was a strong although not invariant trend for callus colour to co-segregate with mating time in both sexes. To genetically separate these two phenotypes we allowed the interspecific F1 hybrids to propagate for 25 generations (F25) without selection for mating time or callus colour, finding that the advanced hybrid population had moved towards B. tryoni phenotypes for both traits. Selection for day mating in replicate lines at F25 resulted in significant phenotypic shifts in both traits towards B. neohumeralis phenotypes in F26. However, we were unable to completely recover the mating time profile of B. neohumeralis and relaxation of selection for day mating led to a shift back towards dusk mating, but not yellow callus colour, by F35. CONCLUSION: We conclude that the inheritance of the two major species-defining traits is separable but tightly linked and involves more than one gene in each case. It also appears that laboratory conditions select for the B. tryoni phenotypes for mating time. We discuss our findings in relation to speciation theory and the likely effects of domestication during the generation of mass release strains for sterile insect control programmes.


Asunto(s)
Fotoperiodo , Conducta Sexual Animal , Tephritidae/clasificación , Tephritidae/fisiología , Animales , Cruzamientos Genéticos , Femenino , Ligamiento Genético , Hibridación Genética , Patrón de Herencia , Masculino , Fenotipo
8.
BMC Genet ; 21(Suppl 2): 135, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339509

RESUMEN

BACKGROUND: The highly polyphagous Queensland fruit fly (Bactrocera tryoni Froggatt) expanded its range substantially during the twentieth century and is now the most economically important insect pest of Australian horticulture, prompting intensive efforts to develop a Sterile Insect Technique (SIT) control program. Using a "common garden" approach, we have screened for natural genetic variation in key environmental fitness traits among populations from across the geographic range of this species and monitored changes in those traits induced during domestication. RESULTS: Significant variation was detected between the populations for heat, desiccation and starvation resistance and wing length (as a measure of body size). Desiccation resistance was correlated with both starvation resistance and wing length. Bioassay data for three resampled populations indicate that much of the variation in desiccation resistance reflects persistent, inherited differences among the populations. No latitudinal cline was detected for any of the traits and only weak correlations were found with climatic variables for heat resistance and wing length. All three stress resistance phenotypes and wing length changed significantly in certain populations with ongoing domestication but there was also a strong population by domestication interaction effect for each trait. CONCLUSIONS: Ecotypic variation in heat, starvation and desiccation resistance was detected in Australian Qfly populations, and these stress resistances diminished rapidly during domestication. Our results indicate a need to select source populations for SIT strains which have relatively high climatic stress resistance and to minimise loss of that resistance during domestication.


Asunto(s)
Clima , Domesticación , Aptitud Genética , Estrés Fisiológico , Tephritidae/genética , Animales , Australia , Variación Genética , Masculino , Fenotipo , Tephritidae/fisiología
9.
Sci Rep ; 10(1): 10788, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32612249

RESUMEN

The Queensland fruit fly, Bactrocera tryoni, is a major pest of Australian horticulture which has expanded its range in association with the spread of horticulture over the last ~ 150 years. Its distribution in northern Australia overlaps that of another fruit fly pest to which some authors accord full species status, Bactrocera aquilonis. We have used reduced representation genome-wide sequencing to genotype 359 individuals taken from 35 populations from across the current range of the two taxa, plus a further 73 individuals from six of those populations collected 15-22 years earlier. We find significant population differentiation along an east-west transect across northern Australia which likely reflects limited but bidirectional gene flow between the two taxa. The southward expansion of B. tryoni has led to relatively little genetic differentiation, and most of it is associated with a move into previously marginal inland habitats. Two disjunct populations elsewhere in Australia and three on Melanesian islands are each clearly differentiated from all others, with data strongly supporting establishment from relatively few founders and significant isolation subsequently. Resequencing of historical samples from one of the disjunct Australian populations shows that its genetic profile has changed little over a 15-year period, while the Melanesian data suggest a succession of 'island hopping' events with progressive reductions in genetic diversity. We discuss our results in relation to the control of B. tryoni and as a model for understanding the genetics of invasion and hybridisation processes.


Asunto(s)
Variación Genética , Tephritidae/genética , Animales , Australia , Estudio de Asociación del Genoma Completo
10.
Pestic Biochem Physiol ; 159: 9-16, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31400789

RESUMEN

An L1024F substitution in the para gene, which encodes a subunit of the voltage-gated sodium channel, has been implicated in pyrethroid resistance in a mite pest, Halotydeus destructor, which attacks rape and other grain crops. A high-resolution melt (HRM) genotyping assay was developed for testing the relative pyrethroid susceptibility of different para genotypes and for high-throughput field screening of resistant alleles. The L1024F mutation was found to be incompletely recessive in phenotypic laboratory bioassays with the pyrethroid pesticide, bifenthrin. While the resistance ratio of heterozygotes (RS) to susceptible homozygotes (SS) was <6 in 24 h bioassays, the resistant homozygotes (RR) (with a resistance ratio > 200,000) survived the recommended field rate of bifenthrin (100 mgL-1). HRM genotyping of mites from field populations across Australia indicated the presence of resistant alleles in Western Australia and South Australia, but not in Victoria and New South Wales. The assay developed will be useful for routine screening of pyrethroid resistance, and the dominance relationships established here point to useful resistance management strategies involving the maintenance of reservoirs of susceptible mites to dilute resistant homozygotes in a population.


Asunto(s)
Insecticidas/farmacología , Ácaros/efectos de los fármacos , Piretrinas/farmacología , Animales , Genotipo , Heterocigoto , Homocigoto , Resistencia a los Insecticidas/genética , Tamizaje Masivo , Ácaros/genética
11.
Biomed Res Int ; 2017: 1268623, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28717646

RESUMEN

Posttranslational modifications (PTMs) occur in all essential proteins taking command of their functions. There are many domains inside proteins where modifications take place on side-chains of amino acids through various enzymes to generate different species of proteins. In this manuscript we have, for the first time, predicted posttranslational modifications of frequency clock and mating type a-1 proteins in Sordaria fimicola collected from different sites to see the effect of environment on proteins or various amino acids pickings and their ultimate impact on consensus sequences present in mating type proteins using bioinformatics tools. Furthermore, we have also measured and walked through genomic DNA of various Sordaria strains to determine genetic diversity by genotyping the short sequence repeats (SSRs) of wild strains of S. fimicola collected from contrasting environments of two opposing slopes (harsh and xeric south facing slope and mild north facing slope) of Evolution Canyon (EC), Israel. Based on the whole genome sequence of S. macrospora, we targeted 20 genomic regions in S. fimicola which contain short sequence repeats (SSRs). Our data revealed genetic variations in strains from south facing slope and these findings assist in the hypothesis that genetic variations caused by stressful environments lead to evolution.


Asunto(s)
Ascomicetos/genética , Proteínas Fúngicas/genética , Genes del Tipo Sexual de los Hongos , Variación Genética , Procesamiento Proteico-Postraduccional/genética , Secuencia de Bases , Glicosilación , Neurospora crassa/genética , Señales de Exportación Nuclear , Fosforilación , Alineación de Secuencia
12.
Insects ; 6(3): 658-85, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26463408

RESUMEN

Mutations in the voltage-sensitive sodium channel gene (Vssc) have been identified in Aedes aegypti and some have been associated with pyrethroid insecticide resistance. Whether these mutations cause resistance, alone or in combination with other alleles, remains unclear, but must be understood if mutations are to become markers for resistance monitoring. We describe High Resolution Melt (HRM) genotyping assays for assessing mutations found in Ae. aegypti in Indonesia (F1565C, V1023G, S996P) and use them to test for associations with pyrethroid resistance in mosquitoes from Yogyakarta, a city where insecticide use is widespread. Such knowledge is important because Yogyakarta is a target area for releases of Wolbachia-infected mosquitoes with virus-blocking traits for dengue suppression. We identify three alleles across Yogyakarta putatively linked to resistance in previous research. By comparing resistant and susceptible mosquitoes from bioassays, we show that the 1023G allele is associated with resistance to type I and type II pyrethroids. In contrast, F1565C homozygotes were rare and there was only a weak association between individuals heterozygous for the mutation and resistance to a type I pyrethroid. As the heterozygote is expected to be incompletely recessive, it is likely that this association was due to a different resistance mechanism being present. A resistance advantage conferred to V1023G homozygotes through addition of the S996P allele in the homozygous form was suggested for the Type II pyrethroid, deltamethrin. Screening of V1023G and S996P should assist resistance monitoring in Ae. aegypti from Yogyakarta, and these mutations should be maintained in Wolbachia strains destined for release in this city to ensure that these virus-blocking strains of mosquitoes are not disadvantaged, relative to resident populations.

13.
J Exp Biol ; 213(Pt 24): 4146-50, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21112994

RESUMEN

To protect cells from the damaging effects of environmental stresses, all organisms possess a universal stress response involving upregulation of heat shock proteins (Hsps). The mechanisms underlying chilling injuries and the subsequent recovery phase are only beginning to be understood in insects. Hsp22 and Hsp23 are both upregulated during the recovery from prolonged chill coma in Drosophila melanogaster. This prompted us to investigate the functional significance of these modulations by testing whether expression of these two small Hsps is necessary for recovery after cold stress. We used the GAL4/UAS system to separately knock down expression of Hsp22 and Hsp23, and assayed three aspects of recovery performance in transgenic adults that had undergone 12 h of chill coma at 0°C. The time to recover (short-term recovery) and mobility parameters (medium-term recovery) were significantly impaired in the transgenic flies in which Hsp22 or Hsp23 was suppressed. Our findings show that both Hsp22 and Hsp23 play important roles in the recovery from chill coma in adult males, and suggest that these contribute to adaptive responses to fluctuating thermal conditions.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Proteínas de Choque Térmico/fisiología , Aclimatación/genética , Animales , Animales Modificados Genéticamente/fisiología , Frío , Respuesta al Choque por Frío/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/genética , Interferencia de ARN
14.
PLoS One ; 5(6): e10925, 2010 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-20532197

RESUMEN

BACKGROUND: Almost all animals, including insects, need to adapt to temperature fluctuations. The molecular basis of thermal adaptation is not well understood, although a number of candidate genes have been proposed. However, a functional link between candidate genes and thermal tolerance has rarely been established. The gene Frost (Fst) was first discovered when Drosophila flies were exposed to cold stress, but the biological function(s) of Fst has so far not been characterized. Because Fst is up-regulated after a cold stress, we tested whether it was essential for chill-coma recovery. METHODOLOGY/PRINCIPAL FINDINGS: A marked increase in Fst expression was detected (by RT-PCR) during recovery from cold stress, peaking at 42-fold after 2 h. The GAL4/UAS system was used to knock down expression of Fst and recovery ability was assessed in transgenic adults following 12 h of chill coma at 0 degrees C. The ability to recover from cold stress (short-, medium- and long-term) was significantly altered in the transgenic adults that had Fst silenced. These findings show that Fst plays an essential role in the recovery from chill coma in both males and females. CONCLUSIONS/SIGNIFICANCE: The Frost gene is essential for cold tolerance in Drosophila melanogaster and may play an important role in thermal adaptation.


Asunto(s)
Frío , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Adaptación Fisiológica , Animales , Animales Modificados Genéticamente , Femenino , Masculino , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
15.
Insect Biochem Mol Biol ; 40(7): 506-15, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20420910

RESUMEN

Aminopeptidases N (APNs) are a class of ectoenzymes present in lepidopteran larvae midguts, involved in the Bacillus thuringiensis (Bt) toxins mode of action. In the present work, seven aminopeptidases have been cloned from the midgut of Ostrinia nubilalis, the major Lepidopteran corn pest in the temperate climates. Six sequences were identified as APNs because of the presence of the HEXXH(X)18E and GAMEN motifs, as well as the signal peptide and the GPI-anchor sequences. The remaining sequence did not contain the two cellular targeting signals, indicating it belonged to the puromycin-sensitive aminopeptidase (PSA) family. An in silico analysis allowed us to find orthologous sequences in Bombyx mori. A phylogenetic study of lepidopteran aminopeptidase sequences resulted in their clustering into nine classes. Linkage analysis revealed that the onapn genes as well as all bmapn genes clustered in a single linkage group. O. nubilalis aminopeptidases were expressed in all larval instars. In 5th instar larvae tissues, apns transcripts were found mainly in midguts while apn8 was also highly expressed in Malpighian tubules, and psa showed an ubiquitous expression pattern in O. nubilalis and B. mori. The sequence homology and gene organization of apns suggest a single origin from an ancestral lepidopteran apn gene.


Asunto(s)
Antígenos CD13/química , Proteínas de Insectos/química , Mariposas Nocturnas/genética , Secuencia de Aminoácidos , Animales , Bombyx/enzimología , Bombyx/genética , Antígenos CD13/genética , Antígenos CD13/metabolismo , Clonación Molecular , Biología Computacional , Perfilación de la Expresión Génica , Ligamiento Genético , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Datos de Secuencia Molecular , Mariposas Nocturnas/enzimología , Mariposas Nocturnas/crecimiento & desarrollo , Familia de Multigenes , Filogenia , ARN Mensajero/química , ARN Mensajero/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína , Homología de Secuencia de Ácido Nucleico
16.
Mol Ecol ; 19 Suppl 1: 240-54, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20331783

RESUMEN

The mimetic wing patterns of Heliconius butterflies are an excellent example of both adaptive radiation and convergent evolution. Alleles at the HmYb and HmSb loci control the presence/absence of hindwing bar and hindwing margin phenotypes respectively between divergent races of Heliconius melpomene, and also between sister species. Here, we used fine-scale linkage mapping to identify and sequence a BAC tilepath across the HmYb/Sb loci. We also generated transcriptome sequence data for two wing pattern forms of H. melpomene that differed in HmYb/Sb alleles using 454 sequencing technology. Custom scripts were used to process the sequence traces and generate transcriptome assemblies. Genomic sequence for the HmYb/Sb candidate region was annotated both using the MAKER pipeline and manually using transcriptome sequence reads. In total, 28 genes were identified in the HmYb/Sb candidate region, six of which have alternative splice forms. None of these are orthologues of genes previously identified as being expressed in butterfly wing pattern development, implying previously undescribed molecular mechanisms of pattern determination on Heliconius wings. The use of next-generation sequencing has therefore facilitated DNA annotation of a poorly characterized genome, and generated hypotheses regarding the identity of wing pattern at the HmYb/Sb loci.


Asunto(s)
Mariposas Diurnas/genética , Perfilación de la Expresión Génica , Alas de Animales , Alelos , Empalme Alternativo , Animales , Mariposas Diurnas/crecimiento & desarrollo , Mapeo Cromosómico , Evolución Molecular , Genes de Insecto , Fenotipo , Análisis de Secuencia de ADN/métodos
17.
FEBS J ; 277(1): 174-85, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19968716

RESUMEN

A common physiological response of organisms to environmental stresses is the increase in expression of heat shock proteins (Hsps). In insects, this process has been widely examined for heat stress, but the response to cold stress has been far less studied. In the present study, we focused on 11 Drosophila melanogaster Hsp genes during the stress exposure and recovery phases. The temporal gene expression of adults was analyzed during 9 h of cold stress at 0 degrees C and during 8 h of recovery at 25 degrees C. Increased expression of some, but not all, Hsp genes was elicited in response to cold stress. The transcriptional activity of Hsp genes was not modulated during the cold stress, and peaks of expression occurred during the recovery phase. On the basis of their response, we consider that Hsp60, Hsp67Ba and Hsc70-1 are not cold-inducible, whereas Hsp22, Hsp23, Hsp26, Hsp27, Hsp40, Hsp68, Hsp70Aa and Hsp83 are induced by cold. This study suggests the importance of the recovery phase for repairing chilling injuries, and highlights the need to further investigate the contributions of specific Hsp genes to thermal stress responses. Parallels are drawn between the stress response networks resulting from heat and cold stress.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Genes de Insecto , Proteínas de Choque Térmico/genética , Animales , Secuencia de Bases , Frío , Cartilla de ADN/genética , Proteínas de Drosophila/fisiología , Expresión Génica , Proteínas de Choque Térmico/fisiología , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/fisiología , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico , Factores de Tiempo
18.
Genetics ; 176(4): 2343-55, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17603115

RESUMEN

French populations of the European corn borer consist of two sympatric and genetically differentiated host races. As such, they are well suited to study processes that could be involved in sympatric speciation, but the initial conditions of host-race divergence need to be elucidated. Gene genealogies can provide insight into the processes involved in speciation. We used DNA sequences of four nuclear genes to (1) document the genetic structure of the two French host races previously delineated with allozyme markers, (2) find genes directly or indirectly involved in reproductive isolation between host races, and (3) estimate the time since divergence of the two taxa and see whether this estimate is compatible with this divergence being the result of a host shift onto maize after its introduction into Europe approximately 500 years ago. Gene genealogies revealed extensive shared polymorphism, but confirmed the previously observed genetic differentiation between the two host races. Significant departures from the predictions of neutral molecular evolution models were detected at three loci but were apparently unrelated to reproductive isolation between host races. Estimates of time since divergence between French host races varied from approximately 75,000 to approximately 150,000 years, suggesting that the two taxa diverged recently but probably long before the introduction of maize into Europe.


Asunto(s)
Mariposas Nocturnas/genética , Animales , Secuencia de Bases , ADN/genética , Cartilla de ADN/genética , Evolución Molecular , Femenino , Francia , Genes de Insecto , Genética de Población , Masculino , Modelos Genéticos , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/patogenicidad , Filogenia , Polimorfismo Genético , Factores de Tiempo , Zea mays/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...